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Abstract-A mathematical formulation based on potential theory is used to develop an accurate numerical 
technique to calculate the mass diffusion-induced growth of a spherical gas bubble surrounded by a viscous 
Newtonian liquid with a limited dissolved gas concentration under isothermal conditions. We solve for the 
complete concentration profile of the dissolved gas in the liquid enveloping the bubble to predict the bubble 
growth. These results are contrasted against the dynamics of bubble growth predicted by the widely 
used approach of employing polynomial profiles to describe the gas concentration. The influence of key 
dimensionless parameters on the differences in the bubble growth due to the choice of concentration profile 
is examined. The investigation reveals that the commonly used approximate solutions for the concentration 
profile not only underpredict the growth rate at the early stages of the growth but also overestimate the 
steady-state bubble radius due to the implicit assumption of an unlimited supply of dissolved gas in the 

liquid. 

7. INTRODUCTION 

THE BUBBLE growth and dissolution in liquids plays a 
key role in diverse fields such as boiling and vapor- 
ization, polymer processing and glass refining. The 
growth process is in general complicated, involving 
simultaneous mass, momentum and energy transfer 
between the expanding bubble and the fluid surround- 
ing it. For example, in the case of mass diffusion- 
induced growth of a gas bubble, the movement of 
the gas-liquid interface depends on the gas pressure 
inside the bubble through the momentum transfer. 
On the other hand, the gas pressure and the bubble 
radius are related to each other and to the rate of gas 
diffusion through the conservation of mass. Also, the 
rate of gas diffusion itself depends on the movement 
of the interface through the diffusion equation. Hence 
the three equations, namely the momentum, the mass 
balance and the diffusion, governing the mass 
diffusion-induced growth of a gas bubble in a pool of 
liquid containing a dissolved gas are highly coupled 
and nonlinear. Due to these complexities, there is 
no known analytical solution to predict the bubble 
growth under general conditions. 

In the past, analytical and numerical methods have 
been developed to predict bubble growth in liquids to 
model specific cases. The governing equations describ- 
ing the spherically symmetric phase growth controlled 
by the transport of mass and heat were presented by 
Striven [l]. He obtained an analytical solution for a 
bubble growing in an infinite pool of liquid using a 
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similarity solution. The similarity solution is valid for 
a bubble growing from an initial zero radius. Due to 
the presence of a geometric length scale, namely the 
initial bubble radius, it is not possible to obtain simi- 
larity solutions to the diffusion equation for a bubble 
growing from a nonzero radius. Cable and Frade [2] 
extended the similarity solution to the cases of multi- 
component bubbles, in which more than one gas 
diffuses into the bubble at the same time. They 
observed that the bubbles growing from a finite initial 
size always approached an asymptotic regime having 
constant bubble composition and that there was a 
linear relation between the radius and the square root 
of time which enabled them to define a similarity 
variable and obtain an analytical solution for the 
asymptotic regime. 

Among the attempts made to obtain approximate 
solutions to the problem of the diffusion-indu~d 
growth of a gas bubble, Barlow and Langlois [3], in a 
pioneering paper, studied the diffusion-induced 
growth of a gas bubble in a viscous liquid. They con- 
sidered both transfer of mass and momentum and 
simplified the diffusion equation by restricting the 
concentrating gradients to a thin boundary layer sur- 
rounding the bubble. Outside the boundary layer, the 
gas concentration was assumed to be undisturbed and 
equal to the initial concentration. A similar assump- 
tion was also used by Plesset and Zwick [4] in their 
study of thermal diffusion into a vapor bubble within 
a volume of superheated water. The above assumption 
allowed them to obtain an analytical solution for the 
early stages of the growth using the Laplace transform. 
Rosner and Epstein [S] used the moment integral 
method to predict the diffusion-induced growth of a 
bubble in highly supersaturated liquids. The use of 
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NOMENCLATURE 

c concentration of dissolved gas Greek symbols 
? gas concentration minus initial gas /I clustering parameter 

concentration, c-cl1 A,. i, eigenvalues 
D diffusion coefficient 11 fluid viscosity 

k, Henry’s law constant /’ fluid density 
P fluid pressure I-‘. gas density 

P, dtmospheric pressure 0 surface tension 
Pr applied pressure 71, 1 ?iw. T<;x/s normal stresses 

P, gas pressure Q) potential function 
r radial coordinate Y ratio of bubble volume to total volume of 
R bubble radius bubble and fluid. 
ri derivative of R with respect to time 
# second derivative of R with respect to time Subscripts 
S outer radius of shell e equilibrium conditions 
t time 0 initial conditions. 

t,,, reference time, p/P, 

L’, fluid velocity in radial direction Superscript 

J‘ Lagrangian coordinate, r3 - R3. * dimensionless quantities. 

the integral method to obtain approximate solutions 
to partial differential equations dates back to von 
Karman and Pohlhausen, who applied the method to 
the solution of boundary layer equations [6]. To solve 
the diffusion equation with the integral method, 
Rosner and Epstein assumed a polynomial to describe 
the concentration profile inside the boundary layer 
surrounding the bubble. Using different orders of 
polynomial profiles, several researchers have adopted 
this method to predict the diffusion-induced growth 

or collapse of a gas bubble in both viscous Newtonian 
and viscoelastic liquids [7-91. Recently, Payvar [lo] 
used a polynomial profile for the gas concentration to 
predict the mass transfer-controlled bubble growth 
during the rapid decompression of a liquid. 

Using polynomial profiles for the gas concentration 
is tantamount to assuming that the bubble grows in 

an infinite pool of liquid, which happened in all the 
cases referred to above. In situations where a large 
number of bubbles nucleate and grow simultaneously 
in close proximity [I I]. the amount of liquid immedi- 
ately surrounding a bubble is finite and so is the 
amount of the dissolved gas. Therefore, the hydro- 
dynamics of the growth and the diffusion process will 
be different from the case of a bubble growing in 
an infinite medium. The underlying assumption in 
adopting a polynomial profile to describe the gas con- 
centration is that at large distances from the bubble 
interface, the gas concentration remains unchanged 
and equal to the initial concentration. This assump- 
tion is not valid for a bubble surrounded by a finite 
amount of liquid with a limited concentration of dis- 
solved gas and cannot predict the steady-state bubble 
radius correctly. Moreover, under such circum- 
stances, it is not possible to obtain a similarity solution 
to the diffusion equation even for a bubble growing 

from zero initial radius. This is due to the presence ot 
yet another geometric length scale, namely the dimen- 
sion of the finite body of the medium surrounding the 
bubble. Therefore, it is necessary to solve the diffusion 
equation in its complete form numerically as opposed 
to using similarity solutions or approximate analytical 
methods. 

In this paper, we analyze the process of mass 
diffusion-induced growth of a gas bubble surrounded 
by a limited amount of liquid and dissolved gas and pres- 
ent a solution technique to accurately solve for the con- 
centration profile of the dissolved gas. Bubble growth 
dynamics are predicted with this concentration 
profile. The results are compared with the predictions 
obtained by using polynomial profiles for the gas con- 
centration. This enables one to establish the range of 
validity of the approximate solutions and investigate 

the errors which may result from the use of such 
solutions. This analysis is restricted to isothermal 
cases. The energy transfer, however. may affect the 
bubble growth in two ways. It may induce mass trans- 
fer due to the phase change (boiling) or it may affect 
the physical and transport properties of the gasp- 
liquid system which are normally temperature depen- 
dent. The latter reason is of significance in viscous 
liquids such as polymer melts. Thus, the assumption 
of isothermal conditions will only affect the magnitude 
of the properties in the cases considered in this study 
and it is not expected to change the qualitative trend 
of the results and the conclusions of this analysis. 

2. MATHEMATICAL FORMULATION 

To analyze the growth of a bubble in a limited 
pool of liquid, we consider a spherical gas bubble 
surrounded concentrically by a hypothetical shell of 
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liquid with finite thickness and constant mass. The 
assumption of the liquid shell around the bubble sig- 
nificantly simplifies the analysis due to the spherical 
symmetry. Figure 1 shows a schematic of the bubble 
and the liquid shell. In this figure, R(t) is the bubble 
radius and S(t) is the outer radius of the liquid shell. 
It is assumed that the bubble growth occurs under 
isothermal conditions, ensuring that the volume of the 
liquid in the shell remains constant. The continuity 
equation for the purely extensional flow of an incom- 
pressible fluid around the bubble yields the velocity 
dist~bution in the liquid : 

I?R2 
2’, = --.- r= (1) 

where v, is the fluid velocity in the radial direction and 
R is the rate of bubble growth. The conservation of 
momentum for the fluid in the radial direction in terms 
of stresses is given as 

(2) 
where p is the density and P is the pressure in the 
fluid. z,, zBB and zd) represent the stresses in the fluid 
and z08 is equal to z,++ due to the spherical symmetry. 
To relate the stresses within the fluid to the gas press- 
ure inside the bubble and to the applied pressure 
at the outer boundary of the shell, equation (2) is 
integrated along the radial direction from the bubble 
interface to the outer boundary of the shell. Use of the 
condition of stress continuity at the interface results in 

p(@P’- 1)Rd2 - (Y “3 - i)(R2R+2RR2)) 

= (~~-~~)R-2~+4~~-1)~ (3) 

where Y is defined as R3/(Y+R3) and V, which is 
equal to S3 - R3, is proportional to the volume of the 
liquid in the shell. R is the second derivative of radius 
with respect to time, Pg is the gas pressure inside the 
bubble, Pr is the applied pressure outside the shell, D 
is the surface tension and p is the fluid viscosity. For 

ac 
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FIG. 1. Schematic diagram of a bubble surrounded by a 
liquid shell. 

large values of V, Y tends to zero and equation (3) 
reduces to the governing equation for bubble growth 
in an infinite medium. However, for small values of V, 
of the order of R3 or less (finite shell thickness), the 
bubble growth rate will be higher due to a nonzero 
Y. The assumption of bubble growth in an infinite 
medium is not acceptable in such cases as it also 
implies that an unlimited amount of dissolved gas is 
available for diffusion into the bubble. This is clearly 
not the correct physics when the body of liquid is 
limited. 

2.1. Mass d@iision 
The mass baiance for the gas inside the bubble can 

be expressed as 

$(p,R’) = 3pDR’ xf = 
0 7 R 

where pg is the density of the gas inside the bubble, D 
is the diffusion coefficient and (a~/&),=, is the con- 
centration gradient of the dissolved gas at the bubble 
interface. The left-hand side of equation (4) is the rate 
of accumulation of mass inside the bubble and the 
right-hand side is the rate of diffusion of gas from 
the liquid into the bubble. Due to the low pressures 
involved it is assumed that the gas inside the bubble 
is an ideal gas and its pressure is related to the gas 
concentration at the interface through Henry’s law 

c, = k,P, (5) 

where c, is the gas concentration at the interface and 
kh is Henry’s law constant. For low gas concen- 
trations, Henry’s constant is a function of the tem- 
perature only [12] and, hence, its magnitude remains 
constant under isothermal conditions. Under non- 
isothermal conditions, its dependence on the tem- 
perature is of the Arrhenius equation form. However, 
the change in the magnitude of k,, under non- 
isothermal conditions will not affect the qualitative 
features of the results presented in this study. 

Initially, the gas concentration is assumed to be 
uniformly distributed throughout the liquid with mag- 
nitude equal to cO. The bubble expansion depletes the 
gas and induces a concentration gradient in the liquid 
shell which initiates the diffusion process governed by 
the following equation : 

R(t) S r G S(t). (6) 

The initial and boundary conditions for this equation 
are presented in the following section. 

2.2. Concentration profile 
To solve for the concentration profile, equation (6) 

is transferred to the Lagrangian coordinate, given as 

y = r3-R3(t). (7) 

This transformation eliminates the convective term. 
The diffusion equation in the new coordinate system is 
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where k is defined as c-cco. The amount of gas in 
the liquid and the bubble is assumed to be constant 
because there is no diffusion of gas to or from the 
liquid at its outer boundary. Mathematically, this 
implies that the concentration gradient at the outer 

boundary of the liquid is zero at all times. Hence. the 

boundary conditions for equation (8) are as follows : 

(9b) 

and as the initial concentration is equal to c,, 

(.‘lr_,, = 0. (10) 

At the early stage of growth and near the interface, 
the concentration gradient in the liquid is large, which 
makes it difficult to obtain an accurate numerical solu- 

tion of equation (8). To avoid this difficulty, we intro- 
duce a vector field Q with the components ? and 
9D(y+ I?)*“(??/@) in the (I’ - t) plane. Using equa- 
tion (8), it can be shown that such a vector field is 
irrotational. Therefore, there exists a potential func- 

tion @(y, t) such that 

Q=V@. (11) 

Hence, equation (8) can be written in terms of the 
potential field as 

(12) 

where C is equal to a@/@. Equation (12) is easier to 
solve for the variable @‘(4’, t), which is the integral of 

gas concentration with respect to the J’ coordinate. 
The initial and boundary conditions given by equa- 
tions (9a), (9b) and (10) written in terms of the new 
dependent variable are 

@(y, 0) = 0 (13a) 

CD, (!: = 0, r) = k,(P, -P,,) (13b) 

@&=.s-l?i,t)=O. (132) 

Solution of equation (I 2) allows one to calculate the 
exact concentration profile in the liquid. Equations 

(3), (4) and (I 2) constitute the system of governing 
equations describing the growth dynamics of a 
bubble. 

It should be pointed out that the commonly used 
approach is to obtain an approximate solution to the 
diffusion equation by assuming a polynomial profile 
for the gas concentration with the moment integral 
method. The underlying assumption in this approach 
is that the gas concentration outside the boundary 
layer is uniform and equal to the initial concentration 
(co) [3,4]. This implies that all derivatives of the con- 
centration are equal to zero outside the boundary 
layer, allowing formulation of an nth-order profile 

for the concentration. Using this approach, equation 
(6) is multiplied by r2 and then integrated with respect 
to the radial coordinate inside the boundary layer. 
If one chooses to describe the concentration with a 
second-order profile and substitute it into the inte- 
grated diffusion equation, one can calculate the 

bubble growth using mass balance without solving the 
diffusion equation explicitly [I 31 

The same method with a third-order profile for the 

gas concentration results in the following expression : 

It is obvious that the choice of a polynomial profile 
for the gas concentration influences considerably the 
solution of the diffusion equation. Given that the 
latter solution determines the growth rate of the 

bubble through equation (3). it appears that the choice 
of polynomial has a considerable influence on the 
predicted bubble radius R(t). This does not happen 
with the method used in this paper, which solves 

explicitly and without any assumption for the gas 
concentration profile. 

3. DIMENSIONLESS FORM OF THE GOVERNING 

EQUATIONS 

The governing equations are transformed into a 
dimensionless form by scaling the variables with 
respect to characteristic values. The initial bubble 

radius (R,) is used as the length scale and (Si- R$. 
which is proportional to the initial liquid volume 
around the bubble, is used to scaic the Lagrangian 
coordinate J. Atmospheric pressure, P;,, is used as 
characteristic value for pressure and frcrr which is 
unknown a priori, is used to scale the time. This leads 
to the following dimensionless variables (denoted with 

a superscript *) : 

l6a) 

(l6b) 

R* = R”- (16~) 
0 

(16d) 

(16~) 
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Equations (3), (4) and (12) can now be expressed 
in dimensionless form as follows : 

Cl (1/2(Y4/3 - l)R*P 

-(Y”‘3-l)(R*Z#*+2R*fi*2)) = (Pi-P:)R* 

-A*-C, (17) 
c,+X*3 

it* = 9C4c:j:,:l,=0 (18) 
d(P*R*‘) 

a@* a2 CD* 
at* = 9C4(l/CJ2’3(y*+ l/C2R*3)4’3 ~ av*2 (19) 

with the following boundary conditions : 

a)*(y*, 0) = 0 (2Oa) 

@;*(y* = 0, t*) = C,(P,*- P,a) (2Ob) 

@&,*(y* = 1, t*) = 0. (2Oc) 

Dimensional analysis shows that frrf, which is related 
to the momentum transfer, is equal to p/P,. There are 
six dimensionless parameters in the above equations 
(C,, i = l-6). C, is a Reynolds number equal to 
pR$ptmf. Cz is equal to (S,/R,)3 - 1 and expresses the 
ratio of the volume of the liquid to the initial bubble 
volume. C2 tending to infinity implies that there is an 
infinite amount of liquid surrounding the bubble. C3 
is the dimensionless surface tension, equal to 2u/R,P,. 
C., is equal to Dp/RgP, and represents the ratio of the 
time scale for the momentum transfer to the time scale 
of the gas diffusion. C, is equal to p(R,T)/P, and is 
the ratio of liquid to the gas density when the latter 
is evaluated at atmospheric pressure and C6 is equal 
to kh Pa, which is a dimensionless Henry’s constant. 

Equations (17)-(19) form the system of governing 
equations in dimensionless form for bubble growth 
that uses the exact concentration profile. The bound- 
ary conditions for these equations are 

R*(t* = 0) = 1 (2la) 

P$(t* = 0) = P,*o. (21b) 

For the case of approximate solutions, where one 
assumes a polynomial profile for the gas concen- 
tration, equation (14) is written in dimensionless form 
as 

dt* CL, 
-=-F(~*3_p-l)2_.$ 
dt* (22) 

where C7, which arises from nondimensionalization 
of equation (14), is equa1 to 6p2k;(RgT)* and ex- 
presses the gas concentration weighted with the 
ratio of the liquid density to the gas density at the atmos- 
pheric pressure. Equations (17) and (22) constitute 
the governing equations describing the bubble growth 
with a second-order profile for the gas concentration. 
If a third-order profile is used for the gas concen- 
tration, equation (22) will remain the same. However, 
parameter CT in this case will be equal to 
27p2k;(R,T)*,‘4. 

4. NUMERICAL IMPLEMENTATION 

The results presented in this study are confined to 
viscous fluids such as polymer melts. Polymeric melts 
may exhibit non-Newtonian and viscoelastic behavior 
under high deformation rates. However, the emphasis 
in this study in on the differences in the bubble growth 
predictions as a result of choosing different methods 
for solving the diffusion equation. Therefore, the effect 
of the non-Newtonian behavior of the fluid on the 
bubble growth was not considered in this paper. It 
has been shown elsewhere [14] that the fluid elasticity, 
in general, enhances the bubble growth at the early 
stages of the growth phenomenon. Wowever, the 
bubble attains the same steady-state con~guration 
eventually, suggesting that the fluid elasticity has a 
significant impact on the bubble growth only at the 
early stage of the process. 

In the bubble growth in inviscid fluids, the viscous 
terms in the momentum equation are generally 
neglected compared to the inertia and surface tension 
terms. This is contrary to the bubble growth in highly 
viscous Auids where the viscous terms are dominant. 
To estimate the magnitude of the inertia terms in the 
momentum equation (equation (3)), we conducted an 
order of magnitude analysis. Using the equilibrium 
radius (R,) and the initial gas pressure, each term in 
equation (3) was made dimensionless and of the order 
of one. The resulting Reynolds number (pR,‘P,,,/p2) 

was found to be much smaller than unity for viscous 
fluids, a fact which justified neglecting the inertia term. 

The system of ordinary differential equations 
governing the bubble growth with the assumption 
of the polynomial profile for the gas concentration 
(equations (17) and (22)) are nonlinear and coupled, 
for which there is no known analytical solution. 
Therefore, a standard fourth-order Runge-Kutta 
method was used to solve them simultaneously. Equa- 
tion (22) is singular at t* = 0 and prompted the use 
of the following transfo~ation : 

[* =r c**, i*(o) = 0. (23) 

This transforms equation (22) to the following : 

_ -_ 2(7.&(R*3 -JP=-- 1Y di* -_-__ 
dr* R*” (24) 

For the general case of the bubble growing in a 
limited body of liquid in which one needs to simul- 
taneously evaluate the complete concentration profile, 
a combination of the Rung+Kutta method and an 
explicit finite difference scheme was employed to solve 
the coupled system of the governing equations (equa- 
tions (17Hl9)). At the onset of the growth near the 
interface, concentration gradients are high ; this poses 
numerical difficulties in solving the diffusion equation. 
Hence, we integrated the diffusion equation by using 
the new variable CD. Although Q is not as steep as 
the concentration profile near the interface, it varies 
rapidly enough to warrant the use of a variable mesh 
with grid points clustered near the interface. We solve 
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equation (19) on a uniformly spaced grid in the com- 
putational domain by employing the following trans- 
formation [ 151: 

where,? is the coordinate in the computational domain 
and fi is the clustering parameter. This trans- 
formation, which is used in boundary layer problems 
with large gradients near the wall, places more grid 
points near _t * = 0 as the clustering parameter 
approaches unity [ 151. A variable clustering parameter 
is required in this case because with gas diffusion from 

the liquid into the bubble the concentration becomes 
less steep. Hence, to calculate the concentration gradi- 
ent at the later stage of the growth process. a more 
uniform mesh is sufficient. 

The calculation starts by making an initial guess for 
the concentration gradient at the interface. Using the 
initial guess, equations (17) and (18) are solved simul- 
taneously to yield new values for the bubble radius 
and the gas pressure inside the bubble. Using the new 

radius and the gas pressure, equation (I 9) is solved 
and the concentration gradient at the interface is cal- 
culated. The calculated concentration gradient is then 
compared with the initial guess. If the error is less 
than a prespecified value. the variables are updated 
and the calculations are repeated for the next time 
step. Otherwise. the initial guess is revised and the 

iteration continues until convergence is achieved. 
Throughout this study, IO- ’ was used as the relative 
convergence criterion. 

5. STABILITY ANALYSIS 

To investigate the stability of the coupled system ol 
ordinary differential equations (equations (I 7) and 

( 18)) about the singular points. we set the right-hand 
side of these equations equal to zero. The system has 
one equilibrium point at w-hich (?‘@*/‘l_~*~ is equal to 
zero and the bubble radius and pressure are equal to 

the equilibrium radius and pressure. The system of 
equations is nonlinear. Therefore. to investigate the 

stability. we lincarizcd these equations about the 
equilibrium point. The eigenvalues of the resulting 

Jacobian matrix are given by 

i , = 0 (26a) 

i 
(26b) 

where R,* is the dimensionless equilibrium radius. The 
eigenvalues are both real and less than or equal to 
zero, which indicates that the equilibrium point is a 
stable node [ 161. 

We also investigated the stability of the finite 
difference scheme using the von Neumann method. in 

this approach, the error at any time I = nAt is assumed 
to be of the form 

E 
,.il 

_ e,‘“.4“’ ei,,,,,: *) (27) 

where e;*‘* is the amplification factor. Using this error 
in equation (19) and simplifying the result. the 
following equation is obtained for the amplification 
factor : 

sin’ (BA.g*/2). (28) 

The error remains bounded if the absolute value of 
the amplification is less than unity. For the relation 
given by equation (28), this condition is satisfied if 

which establishes the stability criterion for obtaining 
the stable solution of the diffusion equation. 

6. RESULTS AND DISCUSSION 

Our objective is to obtain the bubble growth history 
by solving the full diffusion equation and explore the 
ranges under which the approximate solutions are 
valid. We would also like to estimate any errors caused 
by the approximate solutions as there are two main 

underlying assumptions made to derive them. It is 
assumed that the concentration can be described by a 
polynomial profile and the concentration at the outer 
shell boundary is equal to the initial concentration at 
all times. which translates into an unlimited amount 
of gas available for diffusion. These two assumptions 
in the derivation of the concentration profile con- 
tribute to the errors in the prediction of the bubble 
radius during the growth process, as shown in Figs. 
2-9. 

At the onset of the growth process and at small 
times. the assumption of a constant concentration at 

the outer boundary is reasonable as the percentage oi 
depleted dissolved gas is small and hence the errors in 
the predictions are due to the selection of polynomials 
to approximate the concentration profiles. Later on, 
more and more dissolved gas which was initially in 
the liquid diffuses into the bubble and eventually one 
would expect the bubble to attain an equilibrium 
radius when all the gas has diffused into the bubble. 
The numerical solution of the diffusion equations does 
predict this behavior and the correct equilibrium 
radius, which can be verified by performing a simple 
mass balance. However, the approximate solutions 
use an imposed boundary condition of an initial con- 
centration at the outer shell boundary and hence the 
bubble will continue to grow, supplied by an unlimited 
amount of gas at the outer boundary. Under these 
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assumptions it may never arrive at an equilibrium 
radius. 

Figures 224 show the effect of thickness of the liquid 
shell (parameter C,) enveloping the bubble on the 

To examine the conditions under which it may be 
acceptable to use approximate solutions, we con- 

bubble growth. The three different values of C2 cor- 

ducted a parametric study. The parameters which 
have a significant effect on the concentration profile 

respond to thin, medium and thick shells. The results 

and hence the growth dynamics of the bubble are the 
amount of liquid in the shell around the bubble, the 

show that as the thickness of the liquid shell envel- 

initial concentration of the dissolved gas or the initial 
gas pressure and the diffusion coefficient. The influ- 

oping the bubble increases, the times to reach the 

ence of these parameters on the bubble growth were 
analyzed and compared with approximate solutions 

equilibrium radius increases. Also, since the mass of 

by varying the dimensionless parameters Cl, P& and 
Cd, respectively. In this analysis an initial bubble 

the gas within the shell increases with its thickness, 

radius of one micron, which is greater than the critical 
bubble size [ll], was used to ensure the growth. All 

the value of the equilibrium radius will be larger. At 

the results in this study are presented in terms of the 
dimensionless time (t* = t/t,r). The average value of 

the onset of the growth, the approximate solution 

p for highly viscous liquids is about lo4 Pa s and, 

follows the bubble growth history within 3-10%. We 

hence, the value of tref in all the cases was chosen to 
be 0.1 s. The predictions of the bubble growth 
obtained by using polynomial profiles for the con- 

define the onset or inception of the growth process as 

centration were verified by comparing them with the 
results of Barlow and Langlois [3]. 

the initial growth period from time equal to zero to a 
time of the order of the time scale for the momentum 

Figures 3, 5 and 6 demonstrate the effect of the 

transfer (trer). Mathematically, 0 < t* < 1 represents 

diffusion coefficient on the growth dynamics by 

the onset of the growth process. Also, it may be 
noticed that there is not an appreciable difference 

changing the value of the parameter C, by two and 

between the second- and third-order polynomial solu- 
tions; hence use of higher order polynomials to 

four orders of magnitude. An increase in the diffusion 

describe the concentration does not result in higher 
accuracy. At large times, as the boundary condition at 

coefficient accelerates the diffusion process. There- 

the outer surface is no longer valid, the approximate 
solutions do not depict the correct physics of the 

fore, the bubble attains its equilibrium radius faster. 

growth dynamics. It must be pointed out that the 
polynomial solutions overpredict (by a factor of 3 or 

However, for the case of the polynomial profile, 

4) the final equilibrium radius. The relative error in 
the final equilibrium radius decreases as the shell 

increasing the diffusion coefficient results in a higher 

thickness increases. This suggests that as the thickness 
of the shell of liquid surrounding the bubble tends to 

growth rate throughout the entire growth period. 

infinity, one would expect a constant relative error 
between the two solutions. This error will be deter- 
mined by the choice of polynomial concentration pro- 

Therefore, the approximate solutions significantly 

file, since the percentage of the gas diffusing out of the 

overestimate the growth rate as seen from these 

liquid will be small enough for the simplified boundary 
condition of undisturbed concentration at infinity to 

figures. The error decreases as the diffusion coefficient 

be satisfactory. 
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FIG. 2. Effect of shell thickness on bubble growth (thin shell, C, = 103, C, = 0.4, C, = 100, P& = 10). 



1718 A. AREFMANESH PI al. 

100 

90 

60 

40 

20 

0 

Polynomial proflle(Znd order) 

Polynomial proflle(lrd order) 

0 10 20 30 40 50 90 70 90 90 100 

Dlmenalonless Time (t/trot) 
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is decreased. For low values of the gas diffusivity and 

at the early stages of the growth process the error in 
the predictions is negligible. 

The influence of the initial gas concentration on the 
growth is depicted in Figs. 3, 7 and 8. The results are 
for three different values of the dimensionless initial 
gas pressure of 5, 10 and 20, which are related to 
the initial gas concentration via Henry’s law. Higher 
initial gas pressures were not chosen because they may 
violate the ideal gas law and because they are seldom 
observed in practical situations. These predictions 
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show that the polynomial profiles underestimate the 

growth rate initially. However, the error decreases as 
the initial gas concentration is increased, indicating 
that polynomial profiles are reasonable approxi- 
mations at higher initial gas concentrations. 

Figure 9 shows a comparison between the exact 
solution and the third-order profiles at the inception 
of the growth process for three different values of 
the parameter C.,, which measures the time scale for 
diffusion as normalized with the time scale for the 
momentum transfer. The results indicate that the 

Polynomial proflle(2nd order) 
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FIG. 4. Effect of shell thickness on bubble growth (thick shell, C2 = 10’. CT = 0.4, C, = 100, I’& = 10) 
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FIG. 5. Effect of gas diffusivity on bubble growth (high gas diffusivity, C2 = 106, 
P& = 10). 

polynomial profiles become more accurate for lower 
values of C.,. Actually, the relative difference between 
the two solutions is less than 6% when C4 is less than 
or of the order of unity. Further investigation revealed 
that this is true irrespective of the magnitudes of the 
parameters C2 and P,,. This indicates that polynomial 
profiles are good approximations for describing 
the concentration to predict diffusion-induced growth 
of a gas bubble up to the time scale of the order 
of t,r and only if the diffusion time scale is smaller 
than tref. 

7. CONCLUSION 

A numerical technique to solve for the exact con- 
centration profile is introduced and used in the equa- 
tions that govern the mass diffusion-induced bubble 
growth in a viscous liquid containing limited dissolved 
gas under isothermal conditions. Scaling analysis is 
performed before the resulting numerical predictions 
are compared with previous approximate numerical 
solutions of the diffusion-induced growth of a gas 
bubble in a viscous liquid. The approximate solutions 
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FIG. 6. Effect of gas diffusivity on bubble growth (low gas diffusivity, Cz = 106, C3 = 0.4, C, = 1, P,, = 10). 
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Polynomkl proflIm(2nd order) 

considered in this analysis were obtained using 
second- and third-order polynomial profiles for the 
gas concentration in the liquid. The influence of 
various dimensionless parameters on the dynamics of 
growth was investigated and the results were com- 
pared with the approximate solutions to establish the 
conditions under which the latter can be used without 
introducing significant errors. The thickness of the 
liquid shell around the bubble, the initial con- 
centration of the dissolved gas and the gas diffusivity 

were among the parameters varied through appro- 
priate dimensionless numbers. The parametric study 
revealed that the approximate solutions are satis- 
factory at the onset of the growth if the parameter C, 
is of the order of one, At the later stages of the process, 
the approximate solutions do not model the correct 
physics due to the boundary condition of an unlimited 
amount of dissolved gas in the liquid. We therefore 
recommend the use of approximate solutions only at 
the inception of growth and when the diffusion time 
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FIG. 8. ESct of initial concentration of dissolved gas OR bubble growth (high gas ~once~t~~tioll. C2 = IO”, 
C, = 0.4, c, = 100, $0 = 20). 
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scales are smaller or of the order of the time scale for 
momentum transfer. 
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SOLUTION NUMERIQUE PRECISE POUR LA CROISSANCE DE BULLE INDUITE PAR 
LA DIFFUSION MASSIQUE DANS DES LIQUIDES VISQUEUX CONTENANT DES 

GAZ DISSOUS 

R&sum&Une formulation mathematique basee sur la theorie potentielle est utilisee pour developper une 
technique numerique precise afin de calculer la croissance induite par la diffusion massique dune bulle de 
gaz sphtrique entouree par un liquide newtonien visqueux aver une concentration limite de gaz dissous 
sous des conditions isothermes. Le profil complet de concentration de gaz dans le liquide autour de la bulle 
est determine pour p&ire la croissance de la bulle. Ces rbsultats sont en contraste avec la croissance 
prcdite par l’approche usuelle de profils polynomiaux pour dtcrire la concentration en gaz. On examine 
l’influence des parametres dimensionnels actifs sur les differences dans la croissance de bulle dues au choix 
du profil de concentration. 11 est revel6 que les solutions approchQs couramment utilisies pour le profil de 
concentration non seulement sousestiment la vitesse de croissance au debut mais aussi surestiment le rayon 
de bulle a l’etat permanent, a cause de l’hypothtse implicite de la fourniture illimitbe de gaz dissous dans 

le liquide. 
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EXAKTE NUMERISCHE L&SUNG DES DURCH STOFFTRANSPORT GESTEUERTEN 
BLASENWACHSTUMS IN VISKOSEN FLUSSIGKEITEN, DIE BEGRENZTE MENGEN 

GELiiSTES GAS ENTHALTEN 

Zusammenfassung---Mit Hilfe der mathtmatischen Beschreibung im Rahmen der Potcntialtheoric wird 
eine genaue numerische Technik zur Bcrechnung des durch Stofftransport gesteuerten Wachstums einer 
sphirischen Blast in einem viskosen Newton’schen Fluid mit bcgrcnzter Konzentration gcliisten Gases 
unter isothermen Bedingungen entwickelt. IJm das Blasenwachstum zu bestimmen. wird fur das geliistc 
Gas das vollstiindige Konzentrationsprofil in der Iimgebung der Blase berechnet. Die Ergebnisse werden 
jener Dynamik des Blasenwachstums gegeniibergestellt, die unter Verwendung der weit verbreiteten Na- 
herung polynomischer Profile zur Beschreibung der Gaskonzentration ermittelt wurde. Der Einflul3 der 
wesentlichen dimensionslosen Parameter auf das unterschiedliche Blasenwachstum--abhlngig von der 
Wahl des Konzentrationsprofils-wird untersucht. Die Untersuchung zeigt. da13 die iiblicherweise verwen- 
deten Naherungsliisungen fur das Konzentrationsprofil nicht nur die Wachstumsgeschwindigkeit im friihen 
Stadium unterschatzen. sondern such durch die implizitc Annahme einer unbeschrinktcn Versorgung mit 

gelostem Gas in der Fliissigkcit den Blascndurchnmscr im station&-en Zustand iiberschken. 

T09HbIH ‘HiCjTEHHbIti PACYET POCTA HY3bIPbKOB 3A C’IET ,4H@@Y3MH B 
BII3KHX )I&iflKOflIIX, COAEPX4QHX PACTBOPEHHbIfi I-A3 OFPAHR9EHHOH 

KOHHEHTPAHRH 

AEHOTPUIU-_AJIX pa3pa60TKa MeTona vHcne~or0 paweTa, 06ycJIoBJIeHHoro .W$+y3Heii pocTa c+epe- 

WCKOTO Ta30BOrO ny3bIpbKa, OKpyKCeHHOrO B113K08 HbIOTOHOBCKOfi )KKBLIKOCTbK) C OrpaHAYeHHOii KOH- 

uewrpawieii paCTBOpeHIiOr0 rasa B R30TepMHSeCLHX ycnosanx, ncnonb3yacn MaTeMaTwiecKax 
+OpMyJIHpOBKa Ha OCHO,,cTeopHH noTeanuana.&rr pacTeTa pocTa ny3bIpbKOB 0npenenaeTcn npo@inb 

KoHueHTpawii pacTBopeHHor0 ra3a B ~KUAKOCTH, orpyxcafoweii nyssrper. IlonyqeHHbIe pe3ynbTaTbl 

CpaBHHBalOTCR C J(HHBMHK0i-i POCTa ny3bIpbKOB, paCCYHTaHHOfi IJIHPOKO paCTllp%TpaHeHHbrM MeTOAOM 
c ricrtonb30aaH~eM nonaHoManbHbrx npo&i_neft. HccnenyeTca ana5nnie 0cuoBHbrx 6e3pa3MepHux napa- 

MeTpOB Ha pOCT ny3bIpbKOB npH pa3JlHWiOM BbI6ope npO&iJIK KOHWHTpWiii. nOKa3iiHO,YTO o6rsen- 
pHH,,TbIe npn6nHXCeHHbIe PeIIIeHHK ZUIR IlpO~WIX KOHUeHTpaUHfi He TOJlbKO 3aHHxaIOT UHTeHCUBHOCTb 

pOCTaHa paHHllXCTWHKX,HO H3aBbIWIOTCTaIJHOHapHbIii paAHyC ny3bIpbKa BCEiJIYHUIBHOrO IIPelXlIO- 
noxeH5ino rIeorpaH~reHHoiinona~epacTBopeHHorora3aBmHnKocTb. 


